
Deep Traffic Light Detection
for Self-driving Cars from a Large-scale Dataset

Jinkyu Kim1,†, Hyunggi Cho2, Myung Hwangbo2, Jaehyung Choi2,
John Canny1, and Youngwook Paul Kwon2,3

Abstract— Traffic lights perception problem is one of the
key challenges for autonomous vehicle controllers in urban
areas. While a number of approaches for traffic light detection
have been proposed, these methods often require a prior
knowledge of map and/or show high false positive rates. Recent
successes suggest that deep neural networks will be widely
used in self-driving cars, but current public datasets do not
provide sufficient amount of labels for training such large
deep neural networks. In this paper, we developed a two-step
computational method that can detect traffic lights from images
in a real-time manner. The first step exploits a deep neural
object detection architecture to fine true traffic light candidates.
In the second step, a point-based reward system is used to
eliminate false traffic lights out of the candidates. To evaluate
the proposed approach, we collected a human-annotated large-
scale traffic lights dataset (over 60 hours). We also designed a
real-world experiment with an instrumented self-driving vehicle
and observed that the proposed method was able to handle false
traffic lights substantially better compared with the baseline
considered.

I. INTRODUCTION

Self-driving vehicle control has recently made remarkable
progress. These controllers involve a variety of sophisti-
cated algorithms for perception, behavioral/motion planner,
and dynamics controllers. Despite their recent success in
some driving scenarios (i.e., highway driving), there still
remain new challenges for urban driving that involves more
complex driving scenarios that need interaction with traffic
controls, vehicles, pedestrians, etc. Especially, traffic lights
pose a challenging (computer vision) problem when subject
to varying lighting, view distances, and weather conditions.
Though its importance for automated driving in urban areas,
conventional approaches showed insufficient reliability and
robustness enough to be used in autonomous systems in the
urban environment without utilizing prior knowledge.

Recent successes suggest that deep neural networks will
be widely used in self-driving cars, especially for a percep-
tion part. Behrendt et al. [1] utilized the “You Only Look
Once” (YOLO) network architecture followed by a small
classification convolutional network to detect traffic lights.
For obtaining a reliable and robust performance from such
a large deep neural network, a large amount of dataset is
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Fig. 1: Our model detects traffic lights, e.g., a red circle, from
an input raw image at each timestep. Our model consists of
two major steps: (1) coarse-grained detector that utilizes deep
neural object detection architecture and is tuned to discover
as many true traffic lights as possible. (2) the spatiotemporal
filtering step that eliminates false traffic lights with respect to
features extracted from both spatial and temporal domains.
The output of our proposed detector is then fed into the
vehicle motion planner and the PID controller that computes
corresponding acceleration and steering angle commands.

strongly required to provide a large variation in environ-
mental conditions. However, the current publicly available
datasets show lacks such variation. For example, the VIVA
challenge [2] for traffic lights only provide 44 minutes of data
and the Bosch Small Traffic Lights Dataset [1] provides only
about 5,000 images (less than 3 hours), which is insufficient
from the view of the conventional way of training such large
deep neural networks. We, therefore, create a large dataset,
which provides over 60 hours of driving images that cover
diverse driving conditions (i.e., lighting and weather). Thus,
we argue this dataset will be ideal for further traffic light
detection studies.

Collecting a large-scale dataset is only part of a story. Reli-
able traffic light detector strongly requires low false negative
(or discovering as many true traffic lights as possible) and
false positive (or eliminating false traffic lights) rates, while
maintaining a high detection accuracy. Here, we propose a
new computational method for traffic light detection, which
consists of two major steps: (1) coarse-grained traffic light
detection and (2) spatiotemporal filtering of the detected
traffic lights. The first step considers individual images and
collects traffic light candidates using a deep neural object
detection architecture. The focus of this step is to reduce false



negatives (FNs) or to discover as many true traffic lights as
possible. The second step is then to eliminate false positives
(FPs) by considering spatial and temporal characteristics of
traffic lights. To distinguish true and false traffic lights, we
propose a point-based reward system where each detected
traffic lights earn rewards and the final decision is made
based on these rewards. To demonstrate the effectiveness of
applying the proposed method to self-driving vehicles, we
test with an instrumented vehicle and successfully drive 6
kilometers on city streets in the San Francisco Bay Area,
California, USA.

Our contributions can be summarized as follows:
1) We propose a new computational method for accu-

rately detecting traffic lights from a raw input image
in a real-time manner.

2) We generated a large-scale traffic lights dataset with
over 71,771 images (over 60 hours) with human anno-
tated bounding boxes.

3) We demonstrate the effectiveness of applying our pro-
posed approach by conducting a real-world experiment
(driving over 6 kilometers including 17 intersections
with traffic lights) with an instrumented vehicle.

II. RELATED WORK

A number of approaches have been proposed for traffic
light detection and classification for autonomous vehicles
and/or for driver assistance systems to navigate in urban
areas. Most of these approaches utilized a supervised learn-
ing approach with human-designated features. This literature
is too wide to survey here. For a thorough review of this
literature, see [3].

These approaches usually depend on strong assumptions:
(1) they are based on recognizing human-designated features,
which generally require demanding parameter tuning for a
balanced performance. (2) Some require the detailed maps
that provide prior knowledge about the specific locations
of all installed traffic lights, which but demand high costs
in building such a map. Furthermore, other issues may
include: (i) color-tone shifting due to changes in atmospheric
conditions and nearby light sources. (ii) Occlusion by other
objects. (iii) High false positive rates caused by brake lights,
reflections, and pedestrian crossing lights. and (iv) Inconsis-
tent traffic light lamps due to dirt, defects, over-saturation of
the camera (especially during night-time).

Recent approaches suggest that deep neural networks can
be successfully used for the traffic light detection task.
Weber et al. [4] utilized a 7-layer convolutional neural
network to predict the multi-class probability map followed
by bounding box regression. Behrendt et al. [1] used the
“You Only Look Once” (YOLO) network architecture to
detect traffic lights, and utilized a tiny convolutional neural
network to classify the categories of each detected traffic
lights. They also provide a dataset, called the Bosch Small
Traffic Lights Dataset, which provides approximately 5,000
images (2.8 hours of driving) and 8,334 annotations. Despite
its potential, training these deep neural networks requires a
large amount of annotated dataset to train a reliable detector

that can address challenges in traffic light detection task.
Though there exist some other open-sources of traffic light
annotations, these datasets are still insufficient for training
deep neural networks in terms of diversity of scenes, quality
of annotations, and their limited volume. For example, the
VIVA challenge dataset [2] only provides approximately
40 minutes of scenes, while the Bosch [1] Small Traffic
Lights dataset provides less than 3 hours (5,000 images).
We, therefore, collect our own dataset, which provides over
60 hours (over 71,771 images) of driving images that cover
diverse driving conditions (i.e., day vs. night and sunny vs.
raining). Thus, we argue this dataset will be ideal for traffic
light detection studies.

III. DEEP TRAFFIC LIGHT DETECTION

Here, we propose a method that accurately and reliably
detects traffic lights from a stream of images captured by
a front-view dash-cam attached to the windshield. As we
depicted in Figure 2, the proposed method contains two
major steps: (1) coarse-grained traffic light detector (Section
III-B) and (2) spatiotemporal filtering (Section III-D) of the
traffic lights candidates. In the first step (coarse-grained de-
tector), traffic light candidates from each image are collected
by utilizing a deep neural object detection architecture. The
main focus of this step is to discover the true traffic lights
as many as possible (i.e., reducing the number of false
negatives). Thus, it is possible that the traffic light candidate
collection may contain false positives. In the second step
(spatiotemporal filtering), we eliminate such erroneously
detected traffic lights by simultaneously considering other
traffic lights over time and space. To distinguish between true
and false traffic lights, we use a point-based reward system
where each detected traffic lights earn rewards with respect
to features extracted from both spatial and temporal domains.

A. Preprocessing

We use an input image that is resized to 288×512×3 with
bilinear interpolation algorithm, hence to reduce computa-
tional burdens for a real-time detection. For the images with
different aspect ratios, we cropped the height to match the
ratio. Following a common practice in image classification
tasks, we subtracted the mean RGB value to achieve zero-
centered inputs, which are originally in different scales. Note
that our dataset contains images where the camera gains
are automatically calibrated to obtain high-quality images.
During the testing process, we also used a cropped image
in the center part of the image, where traffic lights are
commonly observed in that area. Thus, a batch of two images
(i.e., whole and cropped images) are fed into our detector.

B. Coarse-grained Traffic Light Detection

Traffic light detector strongly requires showing reli-
able performance in real-time and working for both small
(i.e., 3x9 pixels) and large objects with low false positive and
low false negative rates, while maintaining a high detection
accuracy. For example, a false red traffic light will lead the
autonomous vehicle to abruptly stop while driving, while
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Fig. 2: An overview of our proposed model. It can be understood in three parts: (i) a coarse-grained detector that utilizes the
deep neural perception network architecture called SSD (Single-Shot multi-box Detector [5]), (ii) a spatiotemporal filtering,
and (iii) a vehicle controller. To demonstrate the feasibility of applying our model to self-driving cars, we use an instrumented
autonomous vehicle which uses the output of our model as an input to control its dynamics.

a missed red light will cause the vehicle to go through an
intersection originally with red lights in its course of driving.

In this coarse-grained traffic light detection step, we focus
to reduce false negative (FN) rates or to collect as many true
traffic lights as possible. We utilize the Single-Shot multi-box
Detector (SSD) [5] that has been shown to be an effective
tool for an object detection task. Note that we use the SSD
architecture that has shown improved detection accuracy in
other benchmarks than YOLO network architecture, which
was utilized in the existing work by Behrendt et al. [1]. More
modern architecture, such as Mask R-CNN [6], may provide
better detection accuracy, but we leave this comparison for
future work. The SSD model is based on a convolutional
network and takes the whole image as an input and predicts
a fixed-size collection of bounding boxes and corresponding
confident scores for the presence of object instances in
those boxes. The final detections are then produced followed
by a non-maximum suppression step – all detection boxes
are sorted on the basis of their predicted scores, and the
detections with maximum score is then selected, while other
detections with a significant overlap are suppressed. As we
described in Figure 2, we use a standard VGG-16 network
architecture [7] as a base convolutional network, which is
pre-trained on ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) dataset [8]. Auxiliary structures – con-
volutional predictor and the additional convolutional feature
extractor – are used following the work by Liu et al. [5].

1) Training objective: The loss function L (= Lloc+Lconf)
is a weighted sum of two types of loss: (1) the localization
loss Lloc measures a Smooth L1 loss between the predicted
and the ground-truth bounding box in a feature space. (2)
The confidence loss Lconf is a softmax loss over multiple
classes confidences. For more rigorous details, refer to [5]

2) Data augmentation: To train a robust detector to
various object sizes, we use random cropping (the size of
each sampled image is [0.5, 1] of the original image size
with fixed aspect ratio) and flipping to yield consistent
improvement. Following [5], we also sample an image so
that the minimum jaccard overlap with the objects is {0.1,
0.3, 0.5, 0.7, 0.9}. Note that each sampled image is then
resized to a fixed size followed by photometric distortions
with respect to brightness, contrast, and saturation.

C. Characterizing Traffic Lights

According to our analysis, the traffic lights appearing in
the detection pipeline possess the following characteristics:

(C.1) As the confidence of a traffic light candidate decreases,
so does the possibility of this being a true traffic light.



(C.2) The possibility of a traffic light candidate being true
increases if the traffic light candidate is detected again
in next timestep at almost the same location.

(C.3) If multiple traffic lights of the same category (i.e., red,
yellow, and green) are detected in a scene, then they are
usually true traffic lights differently located (i.e., mul-
tiple traffic lights are installed at an intersection).

(C.4) Traffic lights shall be located following the governmen-
tal guideline (i.e., at least one of the signal faces shall
be located at an intersection mounted on the mast arm.),
hence the possibility of a traffic light candidate being
true increases as its location gets close to the usual.

As is evident above, examining traffic lights individually is
not sufficient, and multiple traffic light candidates over space
and time should be considered simultaneously.

D. Spatiotemporal Filtering

1) Fine-grained detector: Recall from Section III-A, we
rescaled images by 40% to reduce the computational burdens
for a real-time system. We observe that the classification
performance of our coarse-grained detector slightly decreases
as we have smaller traffic lights (i.e., seen from a farther
distance). Thus, we utilize an additional small classifica-
tion network, called fine-grained detector, that has a high-
resolution input. All bounding boxes from the coarse-grained
detector are cropped and rescaled to 100×100 pixels, they
are then fed into the fine-grained detector. For training, we
collect image patches that are cropped and rescaled from the
ground-truth dataset. Overall, we collect 24,991 and 6,248
patches for training and validation, respectively.

2) Score function: According to our traffic light charac-
terization (see C.1–C.4), we need to examine multiple traffic
light candidates simultaneously for accurate traffic light sta-
tus recognition. In addition, we set the confidence threshold
value of the coarse-grained detector so as to minimize the
number of FNs (i.e., the true traffic lights that are erroneously
left undetected). Consequently, it is likely that the traffic
lights detected in the previous step contain false traffic lights
that further need to be filtered out. In this spatiotemporal
filtering step, we seek to resolve these issues using a point-
based reward system where each detected traffic lights earn
points with respect to the following characterizations:

(S.1) Each traffic light candidate has its own score for being
true, and its score is accumulated in the next timestep
if detected again under our matching criterion (i.e., eu-
clidean distance between centers of each candidate).

(S.2) Every traffic light candidates from coarse-grained de-
tector earn a reward R at each timestep.

(S.3) Scores are discounted by a pre-specified discount rate
γ at each timestep.

Concretely, the score function sj(t) for a candidate j is
defined as follows:

sj(t) = min
(
SMAX, Rcj(t) + γsj(t− 1)

)
(1)

where cj(t) ∈ [0, 1] is the confidence value computed by the
coarse-grained detector. A maximum score is set to SMAX.
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Fig. 3: Traffic lights annotation statistics.

3) Decision: The output of this step is a tuple of the
current traffic light status. For each type k of traffic light
signals (i.e., k ∈{turning left, going forward, and turning
right}) and each traffic light status (i.e., unknown, red,
yellow, and green), we accumulate scores over traffic light
candidates and output the status of the maximum score.

ok(t) = argmaxi∈{red, yellow, green, unknown}
∑
j

1(i, j)sj(t)

(2)
where 1(i, j) is an indicator function that is 1 if j-th
candidate has the same status as i, otherwise 0.

IV. TRAFFIC LIGHT DETECTION DATASET

In order to effectively train and evaluate a deep neural
perception approach, we have collected a large-scale traffic
lights dataset. Our dataset contains RGB color images cap-
tured by a dashcam mounted behind the front mirror of the
vehicle. Each image has the resolution of 1280 × 720 pixels.
We provide the dataset statistics in Table I. Our dataset is
composed of over 60 hours of driving taken in diverse driving
conditions, e.g., day/night, city/residential ares, etc. We have
collected 71,771 images mainly in the San Francisco Bay
Area in California, USA. To avoid high similarity between
images, we sample images at every 3 seconds. Overall,
34,604 are labeled, the minimum size of labeled traffic
lights is approximately 3 (width)×9 (height) pixels. We also
introduce a training and a test set, containing 64,607 and
7,164 images, respectively. In Figure 3, we illustrate the
distribution of the different traffic light states, which have
eight categories: off, too small to annotate, green (circle),

TABLE I: Dataset details with the comparison to other
publicly available datasets: the VIVA Challenge for traffic
lights [2] and the Bosch Small Traffic Lights dataset [1].

VIVA [2] Bosch [1] Ours

Training Testing Training Testing Training Testing

#Images 20,526 22,481 5,093 8,334 64,607 7,164
FPS 16 16 1/2 15.6 1/3 1/3
#Annotations 54,161 64,170 10,756 13,493 31,239 3,365
#Hours ≈ 22min ≈ 22min ≈ 2.8 hours ≈ 8.9min ≈ 53 hours ≈ 6 hours

Image Res. 1280×960 1280×720 1280×720
Location San Diego, USA The SF Bay Area, USA The SF Bay Area, USA



Green circle

Red circle

Yellow circle

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

Recall

P
r
e
c
is
io
n

0.4 0.6 0.8 1.0

Green left

Red left

Yellow left

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2

Recall

P
r
e
c
is
io
n

0.4 0.6 0.8 1.0

A B

Fig. 4: Performance evaluation of our coarse-grained detector
in terms of two widely-used metrics: precision and recall. For
red, green, and yellow circles, see A. For others, see B.

red (circle), yellow (circle), green (left-turn), red (left-turn),
and yellow (left-turn).

V. RESULT AND DISCUSSION

A. Training and Evaluation Details

For training a coarse-grained detection model, we use the
stochastic gradient algorithm (SGD). Unless stated, we use
default hyper-parameters following the work by Liu [5]. Our
model took less than 3 days to train on three NVIDIA Titan
X Pascal GPUs. Our implementation is based on a deep
learning framework called Caffe [9].

B. Quantitative Analysis

As shown in Figure 4, we first measured the classification
performance of our coarse-grained traffic light detector in
terms of recall and precision. We tested with different
threshold values in [0, 1]. Note that a good classifier will
have higher precision and recall values. The coarse-grained
detector seeks to minimize the number of FNs (or undetected
true traffic lights) to maintain high recall – suggesting that
few true traffic lights went undetected by using this method.
In the cases tested, maintaining a high recall increases the
number of FPs (or detected false traffic lights), which support
the need to use the refinement step. The numbers of training
example for the yellow circle and left lights are smaller than
other colors, and we observe the classifier shows poor clas-
sification performance for the yellow circle and left lights. It
would also worth exploring the use of other types of more
expressive neural networks, which may give a performance
improvement over our network configuration [10]. However,
exploration of other architectures would be out of our scope.

Recall from Section III-D, we use a fine-grained detector
that further examines the traffic light candidates by using an
additional small neural network with high-resolution inputs.
Table II shows the classification performance with and with-
out the fine-grained detector. In the cases tested except for
two classes (i.e., red circle and red left), using a fine-grained
detector resulted in higher classification performance in F-
measure values. The F-measure is 3.44 - 17.03% higher as
compared to the coarse-grained detector only.

C. Real-world Experiments

To demonstrate the feasibility of applying our traffic light
detector for a real self-driving car (see Figure 5 (A)), we

utilize an instrumented vehicle equipped with the following
specifications:

(V.1) Vehicle: Hyundai Genesis G80
(V.2) Sensors: 2×Velodyne LiDAR sensors, 4×Radar sen-

sors, and 1×video camera (resolution: 1280x720 pixels,
frame rate: 10Hz, field of view (FOV): 60 degrees).

(V.3) PC: Intel i7 Quad-core processor, 16GB DDR3 memory,
a 1TB SSD, a Titan X Pascal GPU, and Linux OS.

We use the Robot Operating System (ROS) for synchronizing
the sensor data and for the message passing of perception,
motion planning, and control nodes. At each timestep, the
sensory data is consumed from raw sensors (camera, LiDAR,
and Radar) and processed by a collection of ROS nodes
that all communicate with each other. We use the PID
controller for our control node, hence the final output control
commands to the throttle, brake, and steering wheel are
provided through our drive-by-wire units. We depict major
steps in Figure 2.

We test our proposed traffic light detector with an instru-
mented vehicle on public roads in Bay Area, California,
USA. As shown in Figure 5 (C-E), the test runs were
performed in an unseen pre-specified testing route (over 6
kilometers), and the test scenario comprised the following
features: (1) The vehicle traversed 17 traffic light-controlled
intersections where the vehicle will follow the rules to stop
on red and go on green. (2) Different lighting conditions
(day vs. night), weather (rainy vs. sunny), and different road
traffic congestion levels are tested. We build a visualization
to show which traffic lights are detected and its the final
decision. We provide examples from our visualizer during
the on-road driving test. Our real-world experiments support
that the proposed traffic light detector can be successfully
operated in a real-time manner.

VI. CONCLUSION

We described a traffic light detection model for self-
driving vehicles by incorporating a state-of-the-art deep
neural object detection architecture and a spatiotemporal
filtering with a point-based reward system. We showed that
(i) incorporation of a spatiotemporal filtering improves traffic
light detection performance by reducing false positive rates,

TABLE II: The effect of using fine-grained detector (see
Section III-D) is evaluated in terms of precision, recall, and
F-measure. Scores are reported in percentage (%).

Classes
without Fine-grained detector with Fine-grained detector

Precision Recall F-measure Precision Recall F-measure

Red circle 70.20 29.70 41.74 68.00 29.50 41.15
Yellow circle 2.20 40.00 4.17 6.00 30.90 10.05
Green circle 37.60 87.80 52.65 60.80 81.60 69.68

Red left 84.20 27.70 41.69 62.40 29.00 39.60
Yellow left 14.30 8.30 10.50 66.70 16.70 26.71
Green left 32.30 50.00 39.25 36.40 51.60 42.69
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(ii) our model can be operated in a real-time manner and can
be applied to real-world self-driving cars, (iii) our large-scale
traffic lights dataset provides a diverse variations and allows
us to train and evaluate a large deep neural network.
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