
Convolution Neural Network-based Lane Change Intention Prediction
of Surrounding Vehicles for ACC

Donghan Lee1∗, Youngwook Paul Kwon1∗, Sara McMains1, and J. Karl Hedrick1

Abstract— Adaptive cruise control is one of the most widely
used vehicle driver assistance systems. However, uncertainty
about drivers’ lane change maneuvers in surrounding vehicles,
such as unexpected cut-in, remains a challenge. We propose a
novel adaptive cruise control framework combining convolution
neural network (CNN)-based lane-change-intention inference
and a predictive controller. We transform real-world driving
data, collected on public roads with only standard production
sensors, to a simplified bird’s-eye view. This enables a CNN-
based inference approach with low computational cost and
robustness to noisy input. The predicted inference of traffic
participants’ lane change intention is utilized to improve safety
and ride comfort with model predictive control. Simulation
results based on driving scene reconstruction demonstrate the
superior performance of inference using the proposed CNN-
based approach, as well as enhanced safety and ride comfort.

I. INTRODUCTION

Adaptive Cruise Control (ACC) systems, introduced in the
early 1990s, are present in many passenger vehicles today
[1]. ACC systems focus entirely on maintaining the space
between the ego car and a preceding car or tracking a desired
speed that a driver selects. The main benefit of ACC systems
is reducing driver fatigue from manually operating brake and
gas pedals. Moreover, ACC is a crucial part of emerging
autonomous driving systems. However, several limitations
still remain, including the lane change prediction problem.
The challenge is when a vehicle swerves into the ego car’s
lane from an adjacent lane and is not recognized by the
system until it is fully inside of the ego car’s lane. This can
make a driver feel uncomfortable and unsafe. Most drivers
will cancel the ACC system by pushing the brake pedal
in such scenarios. If the system can predict the motions
of surrounding vehicles, such as lane keeping and lane
changing, it will obtain crucial information to overcome the
aforementioned issues.

An overview of existing approaches for the motion pre-
diction of surrounding vehicles can be found in [2]. They
propose a classification into three motion models: physics-
based, maneuver-based, and interaction-aware motion mod-
els. First, physics-based motion models propagate the ve-
hicle’s motion based on the laws of physics. In this class,
constant kinematic models are widely utilized because they
can easily infer the future motion of traffic participants under
a few assumptions [3]. For instance, the Constant Turn Rate
and Velocity (CTRV) models take into account the variation

1Donghan Lee, Youngwook Paul Kwon, Sara McMains, and J. Karl
Hedrick are with the Department of Mechanical Engineering, University of
California, Berkeley, CA 94720, USA. {donghan.lee@, young@,
mcmains@, khedrick@me.}berkeley.edu

∗The authors contributed equally.

around the z-axis by introducing the yaw angle and yaw rate
variables in the vehicle state vector [4], [5], [6]. However,
these models are limited to short-term motion prediction,
since they are not able to anticipate any change in the
motion of vehicles due of drivers’ maneuvers such as lane
changes [2], [7].

Many researchers tackle the long-term prediction issue
based on maneuver-based motion models. A wide range of
machine learning techniques are utilized in order to predict
vehicle maneuvers in this class. One such method is a
hidden Markov model (HMM), which is used for lane change
prediction given features such as lateral position of the target
vehicle with respect to the center-line of the nearest lane [8].
Support vector machines [9] and random forests [10] are
also popular data-driven approaches for maneuver intention
estimation. Probabilistic Multi-layer perceptron (MLP) is
proposed for lateral motion prediction in [3]. Based on a
set of three representative trajectories for each target lane,
the MLP model provides probabilities of how likely a vehicle
will follow each trajectory and each lane with high speed data
sets. A limitation of methods in this class is the assumption
that vehicles move independently from each other, which
does not hold in practice because motion by one vehicle
will necessarily influence the maneuvers of other vehicles.

Interaction-aware motion models consider inter-vehicle
dependencies, i.e. the motion of a vehicle is assumed to
be influenced by the motion of other vehicles in the scene.
In [11], coupled hidden Markov models (CHMMs) offer
a way to model multiple interacting processes without a
conflict with the Markov condition. However, as the number
of possible pairwise dependencies grows in the context of
complex traffic situations, the complexity quickly becomes
intractable. There is some work that reduces the computa-
tional complexity of the problem based on the assumption of
asymmetric dependencies [12], [13]. However, computations
are still expensive and not compatible with real-time tasks.

In this paper, we propose a novel approach to infer traffic
participants’ lane-change-intentions based on a convolution
neural network (CNN) for enhancing ACC. The lane change
prediction model provides the intent of drivers of surrounding
vehicles to a predictive controller, which is in charge of
guaranteeing drivers’ safety and ride comfort. The contri-
bution of our work is twofold. The main contribution is
that the inter-vehicle dependencies are innately taken into
account with real-time motion prediction. The proposed
CNN-based approach is motivated by the recent successful
results of CNN-based methods in various image-related tasks
(object detection [14], image retrieval [15], image segmenta-

Threshold

EV

TV

(i) (ii) (iii) (iv) (v)

Fig. 1. Ego vehicle (EV) and a target vehicle (TV) cutting in

tion [16]), capturing complex and non-linear patterns in data
sets. Even though one could train a CNN for lane change
prediction directly from camera images, the process would
require a large number of annotated images and a network
with many layers such as the 19-layer VGGnet [17] used for
classifying natural images. Hence, we introduce a compact,
binary, and simplified bird’s-eye view (SBV), which enables
us to utilize a CNN-based approach, and at the same time, to
train a model using real data sets with significantly reduced
computational cost.

The secondary contribution is that only one front-facing
radar sensor and one camera sensor, which are standard
equipment on currently manufactured cars with ACC, are
used for the inference of the lane change motions. This is
quite unlike previous work where additional Lidar sensors [8]
or multiple radar and camera sensors [18] are utilized to
estimate the behavior of the surrounding traffic participants.
This implies that the proposed algorithm can be applied to
currently manufactured cars with driver assistance systems
such as ACC and lane keeping assistance.

II. PROBLEM DEFINITION

A target merging from adjacent lanes is chosen as a
primary target (PT) in commercial ACC systems such as
those from Mando Corp. only when the target fully gets into
the threshold corresponding to step (iv) in Fig. 1. This late PT
detection becomes critical in scenarios where a car is cutting
into the ego vehicle’s lane without keeping a proper safety
distance or when it is decelerating while changing lanes. In
this study, we do not consider high speed cases where the
speed of the EV is over 50 miles per hour, since nearly 74%
of crashes related to this challenge occurred on roadways
less then or equal to 45 miles per hour [19]. Usually, at high
speed the EV has enough distance to decelerate its speed to
avoid collision with merging vehicles compared to low speed
scenarios.

III. METHODS

A. System Description

The proposed system architecture is shown in Fig. 2. In the
“Environmental Perception” module, sensor fusion combines
measurements from radar and camera sensors to provide
relative positions and relative velocities from the ego vehicle
(EV) to target vehicles (TVs) in neighboring lanes. In addi-
tion, lane information in terms of the lateral distance from the
EV to the lane markers and two degree-3 polynomials (one
for each lane) is transferred to the “Simplified Bird’s-eye
View (SBV)” module. In the SBV module, we reconstruct
a simplified driving scene based on the observations from

Environmental Perception

Lane Detection
Sensor Fusion

Primary Target Selection

Lane Change Intention Inference

stacked

Controller (MPC)

Vehicle

“left cut-in”

“slow down”

SBV

(CNN)

0.16
0.82
0.02

Fig. 2. The proposed adaptive cruise control framework with an example
scenario

the “Environmental Perception” module. Then, the CNN-
based “Lane Change Intention Inference” module computes
the most likely lane change intention of TVs. Lastly, the
“Primary Target Selection” module chooses the PT as the
reference for the controller at the current time, and transfers
its relative distance and the relative velocity to a predictive
controller.

B. Sensor Fusion Data and Simplified Bird’s-eye View

Real world driving data1 was collected during straight
driving on public roads with three different cars which each
have one radar sensor and one camera sensor installed.
Mando Corp.’s implementation of sensor fusion for more
accurate relative positions and velocities compared to single
sensor cases uses a probabilistic track-to-track association
algorithm to determine which tracks pertain to the same real-
world object. We take our “Environmental Perception” output
from this commercial system.

We generate an SBV from these outputs. Specifically, at
any given time frame, the SBV is a binary 2-channel (h×w×
2) image. Since we do not consider high speed scenarios, the
50m× 10m physical region (50m to the forward direction,
and 5m to the left and right side with regard to the EV) is
determined as the size of the SBV. Hence, one pixel in a
SBV corresponds to h/50 × w/10 physical square meters.
There are two channels, a vehicle channel and a lane channel.
We mark a vehicle (4m×1.6m) in the vehicle channel, and
draw lane information (third-degree polynomials) in the lane
channel with the width of two pixels.

The inference of the lane change intent should be made
by context, i.e., inputs for the inference at a certain moment
should include earlier frames as well as current frame.
Therefore, for inference at frame t, we stack a priori nf

1Mando Corp., an automotive part manufacturing company in S.Korea,
provided the data sets.

2

2,620 2,640 2,660 2,680

0.5

0.75

1

framesla
be

l
co

nfi
de

nc
e

1

2

la
be

l

Fig. 3. Label confidence. A left cut-in takes place in this example. The
black dots show labels for each frame, and the blue solid line represents
the label confidence. The frame interval is 0.05 seconds.

SBVs with δf frame intervals, i.e., SBVs at frame t, t−δf , ...,
and t − (nf − 1)δf . We denote these stacked SBVs, a
h × w × 2nf binary matrix, as xt, which is the input of
the proposed inference network.

An example stacked SBVs is shown in Fig. 2 (h =
250, w = 100, ch = 8, cw = 8, nf = 3). Note that a SBV
is a binary image even though we visualize each SBV as a
color image with the vehicle channel in red, and the lane
channel in green in Fig. 2.

C. Lane Change Intention Inference

We define a CNN-based network f that consists of a
set of weights, W . The network can be thought of as a
function that takes a h× w × 2nf binary (stacked) SBV xt
at frame t as input, and outputs the probability distribution
ŷt = (ŷ

(1)
t , ŷ

(2)
t , ŷ

(3)
t) for the three classes, lane keeping

(label 1), left cut-in (label 2), and right cut-in (label 3). This
is denoted as:

ŷt = f(xt|W)

xt ∈ {0, 1}h×w×2nf , ŷt ∈ [0, 1]3,

3∑
i=1

ŷ
(i)
t = 1.

Using xt and its one-hot encoded2 3-tuple label yt, we
train the network so as to find the optimal W ∗ that minimizes
a loss function as follows:

W ∗ = argmin
W

1

n

n∑
t=1

loss(yt, ŷt)

= argmin
W

1

n

n∑
t=1

loss(yt, f(xt|W)).

Since our SBV-based inputs are small, sparse, and binary,
we do not need complex neural network architectures such
as designed for natural images. We experimentally chose six
layers, as illustrated in Fig. 2. The convolution and fully
connected layers have rectified linear unit (ReLU) activation,
except for the final fully connected layer. To avoid over-
fitting, we add dropout [20] to fully connected layers except
for the last one. By taking the soft-max function of the final
layer, a 3-tuple probability distribution ŷ is acquired, namely,
the posterior probability corresponding to lane keeping, left
cut-in, and right cut-in.

We modify the standard cross entropy loss typically used
for classification problems to address the uncertainty in the
label assignment in this application. Recall that a label is

2E.g., an integer label ‘3‘ becomes
[
0, 0, 1.0

]

assigned to each frame by a human expert. However, there
is uncertainty near the boundaries of the label transitions
and noise in the actual labeling of data. Thus, error will
likely occur near label boundaries [21]. Hence, we assign to
each frame not only a label but also a label confidence. At a
given frame t, we find the closest human-labeled earlier and
later transition moments, tearlier and tlater, respectively. For
example, in Fig. 3, frame 2640 has tearlier = 2640 − 2623
and tlater = 2658 − 2640 (because the transitions in the
human-expert labels occur at frames 2623 and 2658). A label
confidence lt at frame t is defined as follows:

lt = min(sigmoid(tearlier), sigmoid(tlater))

where sigmoid(x) = 1/(1 + e−sx) with s the coefficient
of the saturation speed. Since sigmoid(x) is 0.5 at x = 0,
and saturates to 1 as x increases, a frame further from any
transition moment gets a label confidence closer to 1. We plot
example label confidences in Fig. 3 with a solid blue curve.
The coefficient s is 1 in this paper since it makes sense to
allow around 0.2 second windows for the transition. (Recall
that the frame interval is 0.05 seconds, and sigmoid(4) =
0.98.)

We use label confidences as weights in the cross-entropy
loss function since it is reasonable for the training examples
with lower label confidence (i.e. in the transition stages) to
get lower penalties for incorrect predictions. In addition, we
add an L2 regulation term to avoid over-fitting. Finally, the
loss function is as follows:

loss(yt, ŷt) =
1

n

n∑
t=1

(lt

3∑
j=1

y
(j)
t log ŷ

(j)
t) + λ||W ||2

where W is the set of all trainable weights in the network;
λ is a coefficient for the regulation term; y(j)

t is the j-th
element of yt; and n is the size of the training set.

We train the network for 50,000 iterations using a stochas-
tic gradient method with batch size 150, starting learning
rate 0.004, and decay rate 0.95 every 10,000 iterations. With
the trained W ∗, for a given input xt, its 3-class probability
distribution inference ŷt is given as the feed-forward output
of the network, i.e., ŷt = f(xt|W ∗). The predicted mode ĉt
corresponding to xt is the index of ŷt with the maximum
probability, i.e,

ĉt = argmax
i

ŷ
(i)
t . (1)

These inference outputs, ŷt and ĉt, are fed into the Primary
Target Selection discussed in the next section.

D. Primary Target Selection

Based on the inference from the lane change intention
inference model, it is necessary to choose the PT for the
controller. First, we partition all target vehicles (TVs) in the
SBV into three groups: those in the adjacent right lane, in
the adjacent left lane, and in the EV’s lane, based on the
positions of the lane markers and each TV. Then, the relevant
targets (RTs) include:
• Left cut-in RT (LRT):=the closest vehicle among the

TVs in the adjacent right lane whose ŷ(2)
t ≥ yth,

3

• Right cut-in RT (RRT):=the closest vehicle among the
TVs in the adjacent left lane whose ŷ(3)

t ≥ yth,
where yth denotes the threshold for the probability distribu-
tion inference. Moreover, the front target (FT) is defined as
the closest vehicle among the TVs in the EV’s lane. If the
FT and LRT exist in a scenario, the relative position and
velocity of the PT is computed as follows:

ppt = (1− ŷ(2)
t)pft + ŷ

(2)
t prt

vpt = (1− ŷ(2)
t)vft + ŷ

(2)
t vrt

(2)

where {ppt , v
p
t }, {p

f
t , v

f
t }, and {prt , vrt } represent the longi-

tudinal position and the longitudinal velocity of the PT, FT,
and RT at instant time t, respectively. In case that the FT
and RRT exist in the SBV, ŷ(2)

t is simply replaced by ŷ
(3)
t

in Eq. (2). In addition, if the FT does not exist in a driving
scene, pft is set to be zero, and vft is replaced by vset, which
is the desired speed that a driver selects in Eq. (2).

E. Controller

Model predictive control (MPC) is utilized for the con-
troller. MPC iteratively solves a finite-horizon constrained
optimal control problem: after computing the optimal control
inputs over a finite planning horizon, the controller imple-
ments the first input and then computes a new set of control
inputs, starting from the updated state. The longitudinal
motion of the EV is described as follows:

xk+1|t :=

 pk+1|t
vk+1|t
ak+1|t

 =

 pk|t + Tsvk|t + 0.5T 2
s ak|t

vk|t + Tsak|t
(1− Ts

τ)ak|t + Ts

τ uk|t


:= f(xk|t, uk|t), k = 0, . . . , N − 1 (3)

where pk|t, vk|t, ak|t denote, at any time instant t, the
predicted longitudinal position, velocity and acceleration of
the EV at time t+ k, respectively; Ts denotes the sampling
time; τ represents the time constant; and ut is a control
input from the controller at time instant t. This longitudinal
motion model includes the acceleration lag, which is mapped
to the actual longitudinal acceleration of the car by a first-
order delay. To design the MPC controller, we first obtain the
future motion of the PT. The motion of the PT is assumed to
be governed by a kinematic model with the constant velocity
(CV) assumption as follows:[

ppk+1|t
vpk+1|t

]
=

[
ppk|t + Tsv

p
k|t

vpk|t

]
, k = 0, . . . , N − 1

where ppk|t, v
p
k|t are, at any time instant t, the predicted

longitudinal position and velocity of the PT at time t + k.
Although the CV assumption is not realistic, the results
in [22] indicate that there is almost no difference in the
performance between the CV model and state-of-the-art
approaches in cases that the horizon is less than 2 seconds.
Since the horizon in our controller is chosen as 0.5 seconds,
the CV assumption is reasonable for this application.

The optimal control input ut can be obtained at time t
by solving the following finite horizon constraint optimal

control problem that incorporates the kinematics of the EV
in Eq. (3) and the safety and comfort requirement:

min
ut,ε

N−1∑
k=0

JTE + JDC + ρε2 (4a)

s.t. xk+1|t = f(xk|t, uk|t) (4b)

ddesk|t = vk|tτgap + dsafe (4c)

∆uk|t = uk|t − uk−1|t (4d)
εvumin + umin ≤ uk|t ≤ εvumax + umax (4e)

εv∆u
min + ∆umin ≤ ∆uk|t ≤ εv∆u

max + ∆umax (4f)
εvamin + amin ≤ ak|t ≤ εvamax + amax (4g)
dsafe ≤ ppk|t − pk|t (4h)

0 ≤ vk|t ≤ vset (4i)
k = 0, . . . , N − 1

x0|t = xt, u−1|t = ut−1, ε ≥ 0 (4j)

where JTE in Eq. (4a) represents the cost for tracking errors
including distance and velocity errors, and JDC in Eq. (4a)
is the cost for driver comfort based on control inputs, rate
of control inputs, and accelerations of the EV defined as:

JTE := wd((p
p
k|t − pk|t)− d

des
k|t)2 + wv(v

p
k|t − vk|t)

2

JDC := wu(uk|t)
2 + w∆u(∆uk|t)

2 + wa(ak|t)
2

and ut denotes the control input sequence
(ut, . . . , ut+N−1) to be optimized over; ddesk|t represents
the desired distance from Eq. (4c) with a time gap τgap;
the comfort constraints Eq. (4e), Eq. (4f) and Eq. (4g) are
imposed as soft constraints with high penalty ρ on the slack
variable ε; Eq. (4h) and Eq. (4i) are the safety constraints;
and vset is the constant speed chosen by a driver. The
optimization problem Eq. (4) is a quadratic program, which
we solve using GUROBI [23].

IV. RESULTS

80 individual driving cases of lane changes were collected
on public roads. We focus specifically on short segments of
data (around 10−20 seconds each) that involve a lane change
maneuver by a TV in a neighboring lane. The segment
start time is usually chosen to be a few seconds before the
TV initiates the lane change and the end time is when the
TV completes the lane change. We randomly choose seven
driving cases as a test set, and randomly divide 90% and
10% of the rest into a training set and a validation set,
respectively. Due to the relatively small number of data sets,
data augmentation is implemented by (1) horizontal flipping
(label 2 and 3 are switched), and (2) vertical translation
randomly within [0, 20] (all labels are preserved).

To decide various hyper parameters of the inference
network, we tested seven configurations on the validation
set. Then, with the best model, we evaluate the proposed
framework with the test set based on the reconstructed
driving scene for a fair performance comparison.

4

SBV Network

Test δf nf h w Archi.3 λ Accuracy wF

T1 8 5 50 50 C1/F3 0.01 93% .874
T2 10 5 100 50 C1/F3 0.01 88% .850
T3 4 10 50 100 C1/F3 0.01 91% .834
T4 8 5 50 50 C2/F3 0.01 95% .877
T5 8 5 50 50 C3/F3 0.01 92% .859
T6 8 5 50 50 C1/F3 0.1 92% .835
T7 8 5 50 50 C1/F3 1 93% .837

TABLE I
VALIDATION SET EVALUATION: EXPERIMENT SETTING AND

PERFORMANCE

A. Lane Change Intention Inference

Among the huge number of possible hyper parameter
combinations, we select seven candidate configurations to
test (Table I). The Accuracy is computed as:

Accuracy (%) =

∑T
t=1 1(ct, ĉt)

T
× 100, (5)

where ct and ĉt, respectively, denote the true mode (deter-
mined by a human expert) and the predicted mode (Eq. (1)) at
time step t, and 1(a, b) = 1 if a = b, else 0. Since test set is
imbalanced (naturally lane-keeping cases are more frequent),
we calculated the weighted average of F1 score (also known
as F-measure) for each mode in the wF column. The score
is the harmonic mean of precision and recall. Readers can
refer to [24] for more details of the F1 score.

The tests T1, T2, and T3 are distinct in the SBV-related
parameters. The aspect ratio of the SBV in T2 is relatively
more similar to the actual aspect ratio (50m×10m) than the
others. We gradually exaggerate the horizontal aspect ratio
(width to height) to T1 and T3 due to the importance of
horizontal movement in lane changing motion. We found that
the intermediate configuration (T1) worked best for the SBV-
related parameters. By fixing the SBV-related parameters, the
T1, T4, and T5 are distinct in the network architecture. We
gradually increase the network size from T1 to T4 and T5.
T1, T6, and T7 are distinct in regulation coefficient, which
did not significantly affect the results. Ultimately, we chose
configuration T4 for simulation tests on the test set.

B. Driving Scene Reconstruction

For the reconstruction of driving scenes for the test set, it
is necessary to know the position of the TV with respect to an
inertial reference frame. We set the inertial reference frame
at the center of gravity of the EV at the time instant when a
driving scene starts; then we compute the position of the EV
using a kinematic model with observations such as the speed
of the EV and the relative heading angle with respect to the
lane. Finally, the position of the TV is computed by adding
the relative distance to the EV. Note that we only consider
a driving scene on a straight road in this reconstruction due

3The details are as follows: “C1/F3“: C(6,32)-P-F(1024)-F(1024)-F(3),
“C2/F3“: C(6,32)-C(1,16)-P-F(1024)-F(1024)-F(3), “C3/F3“: C(6,64)-P-
C(3,32)-P-C(1,32)-P-F(1024)-F(1024)-F(3) where C(w, x): a convolutional
layer with x w × w filters, P: 2x2 max-pooling, F (x): a fully connected
layer with x output neurons.

EV

TV

∆x

∆yY

X XEV
YEV

Fig. 4. Illustration of the utilized coordinates. The EV’s global position is
given by XEV and YEV . The longitudinal and lateral position of the TV
with respect to the EV is denoted by ∆x and ∆y.

Metric Unit CNN-ACC HMM-ACC Com-ACC

maxa m/s2 1.73 ± 0.54 1.79 ± 0.53 1.76 ± 0.58
maxj m/s3 3.94 ± 1.46 6.31 ± 2.54 7.67 ± 3.18
TTCi 1/s 0.20 ± 0.07 0.21 ± 0.07 0.21 ± 0.07

Accuracy % 89.87 ± 6.97 81.14 ± 16.56 -

TABLE II
TEST SET EVALUATION: MEAN AND STANDARD DEVIATIONS OF EACH

METRIC FOR THE THREE APPROACHES

to the limitation of estimating the positions of EV with on-
board sensors such as wheel-speed sensors. Fig. 4 shows
the inertial coordinates to find the global positions of the
TV. Then, the global positions of TVs and the positions of
the lane markers with respect to the EV are passed to the
SBV and lane-change-intention inference algorithm. After
selecting the PT, the position and the velocity of the PT are
transferred to the controller. Finally, the motion of the EV is
simulated using Eq. (3).

C. ACC Simulation

We compare the performance of the proposed ACC ap-
proach (denoted as CNN-ACC) with the commercial solution
described in Section II (denoted as Com-ACC) and ACC
based on probabilistic inference using a hidden Markov
model (denoted as HMM-ACC). The details of HMM-ACC
are covered in [25]. For a fair evaluation, the same control
strategy with the parameters in Section III-E is used for all
three approaches. We first define metrics for the evaluation
of the aforementioned methods with each test data set as
follows:
• Absolute vales of the maximum deceleration, maxa
• Absolute vales of the maximum negative jerk, maxj ,

defined as the rate of the change of deceleration
• Maximum inverse time-to-collision, TTCi, defined as

the ratio of the relative speed and the relative distance
of the EV with respect to the PT

• Accuracy of the inference, Accuracy, defined in Eq. (5)
Metrics maxa and maxj represent the ride comfort of the
ACC system, where lower values correspond to a smoother
behavior. Metric TTCi characterize the safety, where a lower
value indicates lower collision risk.

Table II shows the test set evaluation results for the three
approaches. The average maxa and maxj of the CNN-ACC
are smaller than for other two methods, which implies that
the CNN-ACC provides superior ride comfort. However, the
three approaches have quite similar TTCi. This may be the
case since the chosen test scenarios are not risky. i.e. the
EV has enough space to decelerate its speed without steep

5

0 1 2 3 4 5
1

2

M
od

e

0 1 2 3 4 5
−2

−1

0

A
cc

el
er

at
io

n

0 1 2 3 4 5
−8
−6
−4
−2

0
2

Je
rk

0 1 2 3 4 5
0

0.1

0.2

time

T
T

C
i

Fig. 5. Comparison of the most likely mode, acceleration, jerk, and inverse
time-to-collision for a given three approaches: CNN-ACC (blue), HMM-ACC
(red, dashed), and Com-ACC (black, dash-dotted). The dashed green line on
the first plot represents the human label.

deceleration. The Com-ACC declares a RT as the PT only
when it fully crosses into the EV’s lane, so the Accuracy of
the CNN-ACC is only compared with the HMM-ACC because
the Com-ACC is not based on inferring a driver’s intent
inference. The CNN-ACC achieves 8% higher Accuracy than
HMM-ACC. One example result is highlighted in Fig. 5. The
HMM-ACC declares the RT as the PT earlier than the human
label while the the most likely mode of the CNN-ACC is
triggered around 1 second, which is similar to the human
expert’s decision. Moreover, the CNN-ACC declares the RT
as the PT 0.5 seconds earlier than the Com-ACC. Referring
back to Fig. 1, this time gap roughly corresponds to detecting
the vehicle’s lane change intention in phase (ii) rather than
(iv). Both early and late declaration with HMM-ACC and
Com-ACC result in larger jerk than with CNN-ACC.

V. CONCLUSIONS

We present a novel adaptive cruise control framework,
in which CNN-based lane-change-intention prediction is
integrated with a model predictive control-based speed con-
troller. A simplified bird’s-eye view enables a computa-
tionally efficient CNN-based approach. The reconstructed
driving scene is utilized for the evaluation of the proposed
method, and the results show the superior performance in
terms of accuracy and driver comfort compared with a
HMM-based inference method and a commercial solution.
In future work, we plan to add more data sets to improve
the robustness of the proposed methods in diverse scenarios.
Moreover, real-experiments on public roads will be per-
formed.

REFERENCES

[1] L. Xiao and F. Gao, “A comprehensive review of the development of
adaptive cruise control systems,” Vehicle System Dynamics, vol. 48,
no. 10, pp. 1167–1192, 2010.

[2] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion predic-
tion and risk assessment for intelligent vehicles,” Robomech Journal,
vol. 1, no. 1, p. 1, 2014.

[3] S. Yoon and D. Kum, “The multilayer perceptron approach to lateral
motion prediction of surrounding vehicles for autonomous vehicles,”
in Intelligent Vehicles Symposium. IEEE, 2016, pp. 1307–1312.

[4] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation
of advanced motion models for vehicle tracking,” in Information
Fusion. IEEE, 2008, pp. 1–6.

[5] N. Kaempchen, K. Weiss, M. Schaefer, and K. C. Dietmayer, “Imm
object tracking for high dynamic driving maneuvers,” in Intelligent
Vehicles Symposium. IEEE, 2004, pp. 825–830.

[6] P. Lytrivis, G. Thomaidis, and A. Amditis, “Cooperative path predic-
tion in vehicular environments,” in Intelligent Transportation Systems.
IEEE, 2008, pp. 803–808.

[7] A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao, “Vehicle trajec-
tory prediction based on motion model and maneuver recognition,” in
Intelligent Robots and Systems (IROS). IEEE, 2013, pp. 4363–4369.

[8] A. Carvalho, A. Williams, S. Lefèvre, and F. Borrelli, “Autonomous
cruise control with cut-in target vehicle detection,” in International
Symposium on Vehicle Control (AVEC), 2016.

[9] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based
approach for online lane change intention prediction,” in Intelligent
Vehicles Symposium. IEEE, 2013, pp. 797–802.

[10] J. Schlechtriemen, F. Wirthmueller, A. Wedel, G. Breuel, and K.-D.
Kuhnert, “When will it change the lane? a probabilistic regression ap-
proach for rarely occurring events,” in Intelligent Vehicles Symposium.
IEEE, 2015, pp. 1373–1379.

[11] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov
models for complex action recognition,” in CVPR, 1997, pp. 994–999.

[12] T. Christopher, “Analysis of dynamic scenes: Application to driving
assistance,” Ph.D. dissertation, Institut National Polytechnique de
Grenoble-INPG, 2009.

[13] M. Liebner, M. Baumann, F. Klanner, and C. Stiller, “Driver intent
inference at urban intersections using the intelligent driver model,” in
Intelligent Vehicles Symposium. IEEE, 2012, pp. 1162–1167.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in CVPR, 2016.

[15] M. Paulin, M. Douze, Z. Harchaoui, J. Mairal, F. Perronin, and
C. Schmid, “Local Convolutional Features with Unsupervised Training
for Image Retrieval,” in ICCV, 2015, pp. 91–99.

[16] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015, pp. 3431–3440.

[17] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in ICRL, 2015, pp. 1–14.

[18] J. Schlechtriemen, A. Wedel, J. Hillenbrand, G. Breuel, and K.-D.
Kuhnert, “A lane change detection approach using feature ranking
with maximized predictive power,” in Intelligent Vehicles Symposium.
IEEE, 2014, pp. 108–114.

[19] B. Sen, J. D. Smith, and W. G. Najm, “Analysis of lane change
crashes,” Tech. Rep., 2003.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp.
1929–1958, 2014.

[21] K. R. Driggs-Campbell and R. Bajcsy, “Identifying modes of in-
tent from driver behaviors in dynamic environments,” CoRR, vol.
abs/1505.05921, 2015.

[22] J. Schlechtriemen, A. Wedel, G. Breuel, and K.-D. Kuhnert, “A
probabilistic long term prediction approach for highway scenarios,”
in Intelligent Transportation Systems. IEEE, 2014, pp. 732–738.

[23] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2016.
[Online]. Available: http://www.gurobi.com

[24] D. M. Powers, “Evaluation: from precision, recall and f-measure to
roc, informedness, markedness and correlation,” 2011.

[25] D. Lee, A. Hansen, and J. K. Hedrick, “Probabilistic inference of
traffic participants’ lane change intention for enhancing adaptive cruise
control,” in Intelligent Vehicles Symposium. IEEE, 2017.

6

