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ABSTRACT

We present a novel descriptor algorithm (DUDE) using
line/point duality and a randomization strategy that provides
simple but robust, consistent feature extraction and corre-
spondence. Using duality enables us to effectively capture a
distribution of line segments, and the proposed randomization
strategy improves repeatability over existing techniques by
generating more line features in common between two im-
ages. We demonstrate the effectiveness of our approach using
a challenging set of disparate image pairs, and show that the
DUDE descriptor performs comparably to state-of-the-art
methods with significantly less computation expense.

Index Terms— Image matching, multi-modal disparate
images, feature detection, feature descriptor.

1. INTRODUCTION

Automatic feature matching is now relatively robust for im-
ages taken with the same sensors under the same condi-
tions, such as in image panorama stitching. Mikolajczyk and
Schmid’s evaluation of local descriptors [1] found SIFT [2]
had the overall best performance.

However, a more demanding situation arises from dra-
matic appearance changes such as occurs with images from
different modalities (e.g., photo vs. painting), sensors, age,
lighting, etc. Some examples are shown in Fig. 1, and rep-
resentative performance shown in Fig. 2. The nature of such
disparate images makes the feature detection and description
process difficult since appearance changes may even include
some features being completely absent in one of the im-
ages, or missing or inconsistent image textures and gradients
(including gradient reversals). For example, pixel gradient-
based local feature descriptors such as SIFT work poorly
with disparate images where pixel gradients are frequently
inconsistent, such as for multimodal medical imaging (e.g.,
CT vs. MRI).
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Fig. 1. Examples from [3, 4] of disparate image pairs.

Fig. 2. Top 40 highest confidence matches of SIFT (left pair)
and our algorithm, DUDE (right pair). Green and red lines
represent correct and incorrect matches, respectively.

Recently, more successful disparate image matching is
reported by [3, 4]. The method by Hauagge and Snavely [3]
detects symmetric structures in images and encodes them into
descriptors. They also present a challenging dataset, mostly
architectural scenes that include symmetric shapes, exhibit-
ing dramatic variations in lighting, time period, modality,
etc. Using the same dataset, Bansal and Daniilidis evaluate
a new method [4] that analyzes the eigen-spectrum of the
joint image graph constructed from all pixels in the images,
and achieve impressive experimental results. However, [3]
may not be suitable for images that do not include symmetric
objects, and [4] is expensive both in time and memory for
eigen-decomposition of a huge matrix.

We consider two questions: (1) what information tends
to be consistently preserved across disparate images despite
significant appearance change (e.g., reversal of brightness and
darkness, partial absence of edges, etc.), and (2) how can we
capture the information and create descriptors effectively and
efficiently?

Inspired by these questions, we detect (hundreds or thou-
sands of) line segments from a given image and exploit them
as input to our descriptor. Lines compromise nicely between
low-level and high-level information. Pixel-level gradients
are not preserved well in our target images. High-level con-



tours (such as humans rely on) are often well preserved, but
extracting them is a challenging and parameter-sensitive task.
Mid-level line segments can capture meaningful information
about contours and are easy to handle mathematically.

Nevertheless, line detection is still parameter-sensitive,
and does not guarantee unique endpoints. Occlusion and
appearance change can cause line segments to become dis-
connected. Existing line-based techniques are not suitable
for such cases: [5] requires a known epipolar geometry, [6]
relies on intensities using a SIFT-like strategy, and [7, 8]
rely on pairwise geometric relationships between line seg-
ments whose endpoints typically vary considerably under
multi-modality.

To overcome the issue of inconsistent line segment de-
tection, we propose a novel descriptor system named DUDE
(DUality DEscriptor) that uses a 3D cylindrical histogram
based on a transformation of line segments to a dual space
(or parameter space) of points. By exploiting line-point du-
ality, DUDE is designed so as to be less affected by line seg-
ment disconnection, and at the same time, captures geometric
relationships very efficiently. This can be viewed as a line
segment version of Shape Contexts [9].

To acquire repeatable and consistent line segments (and
therefore feature points) across disparate images, we adopt an
idea from an image segmentation technique in [10]. Instead of
grouping to form segmentations (regions) based on predefined
similarity in a bottom-up hierarchical manner, we similarly
merge line segments from an initial line segment set (that may
include broken line segments).

We evaluate our method with the challenging multi-modal
dataset of [3, 4]. Although many of its images contain the
symmetry required for Hauagge and Snavely [3]’s approach,
DUDE outperforms [3] using a more general approach, and
in combination with our feature detector, we achieve similar
performance to the state-of-art [4] with significantly more ef-
ficient computation.

2. THE DUDE DESCRIPTOR

The idea underlying our descriptor is illustrated in Fig. 3, for
two sets of line segments for the (manually chosen) corre-
sponding regions centered at the red points. Despite similar
appearance, the number and endpoints of corresponding line
segments vary considerably. We propose to capture the distri-
bution, relative to a feature location p, of line segment set S
despite disparate detection.

The DUDE descriptor takes advantage of line-point dual-
ity by transforming lines into points in dual space. We de-
note a line segment as [r, θ, f1, f2], instead of [x1, y1, x2, y2],
where r and θ are defined by the infinite line1 containing the
segment, and the two f values, calculated from sin(ψ), repre-
sent how far each endpoint is from the orthogonal projection

1x cos θ + y sin θ − r = 0.
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Fig. 3. (a, b) Line segment sets extracted from a pair of im-
ages of the same scene and (c, d) their r-θ dual space repre-
sentations for the origins indicated by the red dots in (a, b)
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Fig. 4. Dual representation r, θ, f1, f2 of a line segment
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Fig. 5. An example of f -binning.

of the coordinate system origin onto the line (Fig. 4) 2.
Typically in image matching, when a set of features, F, is

given, a feature descriptor Di is assigned to each Fi ∈ F. In
many techniques such as SIFT, Fi is defined as [xi, yi, si, θi],
representing the location, characteristic scale, and orientation,
respectively. We also assume features have this form.

Our descriptor design is as follows. The set of line seg-
ment S is extracted from the image3. For a given feature
Fi, we first identify the set of line segments Si ⊂ S that
are within a circle whose center is (xi, yi) with radius qsi,
where q is a parameter for local range of interest. We calcu-
late [r, θ, f1, f2] values of all line segments s ∈ Si, relative to
the Fi-defined coordinate system with origin at (xi, yi) and
orientation θi. Then for each Si we create a 3D cylindrical
coordinate (r, θ, f), r ∈ [0, qsi], θ ∈ [0, 2π), f ∈ [−1, 1]),
and accumulate them in a histogram for Fi. We divide the

2Naturally, f has a value in [−1,+1]; we set f1 < f2.
3We use the Line Segment Detector (LSD) [11] for initial extraction.



histogram’s r and θ axes uniformly into nr and nθ bins, re-
spectively, and divide the range f into nf bins using a log
scale. Because f1 and f2 denote the endpoints of the range
of each line segment, segments are binned as a range, con-
tributing to bins by the coverage percentage. Fig. 5 shows an
example of the range histogram when f1 = −0.4, f2 = 0.1
and nf = 6. In this manner, each [r, θ, f1, f2] of s ∈ Si is
accumulated in the 3D histogram. By concatenating the his-
togram bins, we have a (nr × nθ × nf )-dimension descriptor
Di. 4

We address two underlying difficulties that any line-based
approach must overcome. First, there is the case that one long
line segment in an image is detected as multiple short seg-
ments in the counterpart image. We lessen this “disconnected
detection” problem by the nature of our descriptor design. Be-
cause collinear line segments share the same r and θ, and their
f ranges are accumulated, the disconnection does not cause
much difference in descriptors. This is seen in the two line
segment sets plotted in r-θ space in Fig. 3 (c, d). Instead
of the f dimension, we visualize longer line segments with
larger and lighter colored discs; collinear line segments will
occupy the same location. One can see that despite the dis-
connection they have similar patterns in r-θ space. Secondly,
slight changes of endpoints can cause changes in r and θ val-
ues. We solve this problem by intentional perturbation of end-
points. We duplicate each segment d times, while randomly
perturbing the endpoints of the additional segments within±3
pixels, both in x and y. This can be regarded as blurring the
histograms and making them less sensitive to unstable end-
point detection.

3. FEATURE DETECTION

Since many feature detectors return features in the form of
[xi, yi, si, θi], different detectors and descriptors can be com-
bined. DUDE descriptors also can take existing feature detec-
tors (e.g., SIFT) as input. However, in this section, we discuss
how to generate a set of more repeatable features across dis-
parate images, which are more suitable for our descriptors.

Because DUDE descriptors use line segments, the concept
is basically to derive a feature per line segment: (xi, yi) at its
midpoint, si as half of its length, and θi its orientation. How-
ever, regardless of line detector algorithms, most initial line
segments are inconsistent across multi-modal images, due to
dramatic appearance changes, as shown in Fig. 6 (middle col-
umn).

To increase the consistency of feature extraction, we pro-
pose to generate multiple groupings of line segments from
the initial line segments by randomly merging them, inspired
by an image segmentation technique in Kim et al. [10]. For
image segmentation, they conducted randomized bottom-up
merging from superpixels in a hierarchical structure, and

4q = 10, nr = 5, nθ = 5, nf = 10 for our experiments.

Fig. 6. An example of two disparate images and their line seg-
ments: An EO (Electro-Optics) and a SAR (Synthetic Aper-
ture Radar) image from [12] (left column), initial line seg-
ments from LSD [11] (middle), and the proposed randomly
merged line segments (right).
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Fig. 7. Merging criterion for the randomized merging pro-
cess; shortest distance δ1 (in pixels), perpendicular distance
δ2 (in pixels), and angle δ3 (in degrees) between line segment
i and j.

identified meaningful regions. We use a similar randomized
merging scheme (see [10] for details), but take line segments
as initial input and use our own merging criterion.

The line merging process is as follows. Given an initial
line segment set, we build a graph where each node represents
a line segment, and each edge connects two neighboring line
segments with a corresponding weight. The edge weight wi,j
(merging criterion) between line segment i and j consists of
three terms: shortest distance δ1,i,j , perpendicular distance
δ2,i,j , and angle δ3,i,j between the two line segments (Fig. 7):

wi,j = (1− δ1,i,j/α)(1− δ2,i,j/β)(1− δ3,i,j/γ) (1)

where α, β and γ are predefined thresholds (80, 16, and 15,
respectively). We collect edges whose weight is larger than a
predefined threshold δw (0.5), and sort them in the descending
order. We then incrementally merge line segments, as in [10],
updating the graph and computing new edge weights. The
merged line segments from the hierarchies are then used for
extracting line features.

4. EXPERIMENTAL RESULTS

To evaluate the efficacy of our detector and descriptor, we
follow the evaluation methodology of [3, 4], using the same
challenging dataset of 46 image pairs from [3].
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Fig. 8. Repeatability. Five detectors are compared: SIFT,
MSER, SYM-I, SYM-G, and MMID (ours). For a given im-
age pair (left), repeatability (y-axis) is computed when con-
sidering top-k features (x-axis).

SIFT SYM-I SYM-G JSPEC MMID
k=100 0.144 0.135 0.173 0.287 0.217
k=200 0.153 0.184 0.228 0.292 0.310

Table 1. Mean repeatability for the entire dataset

First, to test the efficacy of our detector, we calculate re-
peatability, a common measure indicating an ability for a fea-
ture detector to extract common feature points across image
pairs. For feature sets F1 and F2, from an image pair, re-
peatability is the fraction of the number of repeatedly detected
features over the total number of features. To determine if
Fi ∈ F1 and Fj ∈ F2 are repeatedly detected, we use the
overlap measure [13] (see also [3, 4] for details).

Note that simply producing a larger numbers of features
can increase repeatability. Therefore, for evaluation, repeata-
bility should be computed and compared only by considering
the “top-k” detections. To select a subset of k detections, we
use scale descending ordering as in [4].

We compare the performance of five detectors: SIFT
keypoints (DoG), SYM-I, SYM-G, JSPEC and our detection
based on the merged line segments, MMID. Fig. 8 shows
repeatability curves generated by varying k values (x-axis),
except for JSPEC, for which source code was not available.
We also provide the performance table suggested by [3, 4]
in Table 1, which indicates the average repeatability over the
entire set of 46 image pairs when k = 100 and k = 200,
respectively.

There are a few things to note. First, JSPEC requires sig-
nificantly higher computation cost both in time and space.
Second, the repeatability should be understood carefully. Re-
peatability is only one aspect of feature detection, and it can
be easily biased (e.g., to the number of detections or density
of detections) and Table 1 represents only two cross-sections
(k = 100 or 200). A detection with higher repeatability does
not always mean a better input for feature descriptors. Be-
cause the final goal is to find a better set of correct correspon-
dences, the evaluation should also be considered in combina-
tion with descriptors, as below. Our detector does, however,
show excellent repeatability.

For descriptor evaluation, we calculate the standard
NNDR (Nearest Neighbor Distance Ratio) score [2] for each
of the matches paired by descriptor similarity. By varying the

Detectors
Descriptors GRID SIFT SYM-I SYM-G JSPEC MMID

SIFT 0.49 0.21 0.28 0.25 0.61 0.24
SYMD 0.41 0.22 0.20 0.25 - 0.26

SIFT-SYMD 0.58 0.28 0.35 0.36 - -
DUDE 0.63 0.35 0.40 - - 0.57

Table 2. Mean average precision (mAP) for different combi-
nations of detector and descriptors from [2, 3, 4], and DUDE.

threshold on the NNDR score, and identifying which matches
are correct (with a known ground truth transformation), we
obtain a precision-recall curve (see our project page [14])
from which mean average precision (mAP) is calculated.

To evaluate the efficacy of detector and descriptor sepa-
rately, we compare the results from different combinations.
Table 2 shows the summarized results over the entire set of
46 image pairs. The column headings list the different fea-
ture detectors tested (GRID5, SIFT [2], SYM-I, SYM-G [3],
JSPEC [4], and MMID (ours)), and the row headings list
the different descriptors (SIFT [2], SYMD, SIFT-SYMD [3],
DUDE (ours)). Regardless of detector, DUDE outperforms
other descriptors.

When we test the DUDE descriptors combined with our
feature detector, we achieved comparable performance to the
state-of-art result of JSPEC, but with much lower computa-
tion cost. To achieve its high performance, JSPEC requires
eigen-value decomposition of a huge affinity matrix. Con-
structed by densely sampling every 5 pixels and assigning a
descriptor to each sampled pixel, for the example image pair
in Fig. 8, each 700× 500 image will generate 14000 descrip-
tors of dimension 256. Then one needs to solve an eigen-
value decomposition of a 28000× 28000 matrix. This seems
infeasible using C++ OpenCV 2.4.11 (Windows 10, Intel i7-
4790K, and 8GB RAM), and although MATLAB performs
better, even the eigen-value decomposition of an 18000 ×
18000 matrix takes 1.6 hours. In contrast, with DUDE, the
entire feature matching procedure for this representative pair
of images takes only 24 seconds (11 s. for detectors, 7 s. for
descriptors, and 6 s. for matching and filtering).

5. CONCLUSION

In this paper we propose a novel detection and descriptor sys-
tem for disparate image matching. The proposed DUDE de-
scriptor can capture the relative distributions of unstably de-
tected line segment sets in a consistent and efficient manner,
and be general enough to be integrated with any choice of fea-
ture detection. DUDE outperforms existing descriptors, and
in combination with our feature detector, we achieve similar
performance to that of the state-of-art with significantly more
efficient computation.

5GRID is a synthetic feature detector suggested in [3], that can be re-
garded as a perfect feature detector of repeatability 1, allowing pure evalua-
tion of descriptor performance when detection is perfect.
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